Chiriri's blog Chiriri's blog
首页
  • Java

    • JavaSE
    • JavaEE
    • 设计模式
  • Python

    • Python
    • Python模块
    • 机器学习
  • Golang

    • Golang
    • gRPC
  • 服务器

    • Linux
    • MySQL
    • NoSQL
    • Kubernetes
  • 项目

    • 传智健康
    • 畅购商城
  • Hadoop生态

    • Hadoop
    • Zookeeper
    • Hive
    • Flume
    • Kafka
    • Azkaban
    • Hbase
    • Scala
    • Spark
    • Flink
  • 大数据项目

    • 离线数仓
  • 青训营

    • 第四届青训营
  • HTML

    • HTML
    • JavaScript
  • Vue

    • Vue2
    • TypeScript
    • Vue3
    • Uni-APP
  • 数据结构与算法
  • C语言
  • 考研数据结构
  • 计算机组成原理
  • 计算机操作系统
  • Java基础

    • Java基础
    • Java集合
    • JUC
    • JVM
  • 框架

    • Spring
    • Dubbo
    • Spring Cloud
  • 数据库

    • MySQL
    • Redis
    • Elasticesearch
  • 消息队列

    • RabbitMQ
    • RocketMQ
  • 408

    • 计算机网络
    • 操作系统
    • 算法
  • 分类
  • 标签
  • 归档
  • 导航站
GitHub (opens new window)

Iekr

苦逼后端开发
首页
  • Java

    • JavaSE
    • JavaEE
    • 设计模式
  • Python

    • Python
    • Python模块
    • 机器学习
  • Golang

    • Golang
    • gRPC
  • 服务器

    • Linux
    • MySQL
    • NoSQL
    • Kubernetes
  • 项目

    • 传智健康
    • 畅购商城
  • Hadoop生态

    • Hadoop
    • Zookeeper
    • Hive
    • Flume
    • Kafka
    • Azkaban
    • Hbase
    • Scala
    • Spark
    • Flink
  • 大数据项目

    • 离线数仓
  • 青训营

    • 第四届青训营
  • HTML

    • HTML
    • JavaScript
  • Vue

    • Vue2
    • TypeScript
    • Vue3
    • Uni-APP
  • 数据结构与算法
  • C语言
  • 考研数据结构
  • 计算机组成原理
  • 计算机操作系统
  • Java基础

    • Java基础
    • Java集合
    • JUC
    • JVM
  • 框架

    • Spring
    • Dubbo
    • Spring Cloud
  • 数据库

    • MySQL
    • Redis
    • Elasticesearch
  • 消息队列

    • RabbitMQ
    • RocketMQ
  • 408

    • 计算机网络
    • 操作系统
    • 算法
  • 分类
  • 标签
  • 归档
  • 导航站
GitHub (opens new window)
  • Hadoop

  • Zookeeper

  • Hive

  • Flume

  • Kafka

  • Azkaban

  • Hbase

    • Hbase
    • Hbase数据模型
    • Hbase 安装
    • Hbase shell
    • Hbase原理
    • Phoenix
    • Hbase与Hive的集成
    • HBase优化
      • 预分区
        • 手动设定预分区
        • 生成16进制序列预分区
        • 按文件设置的规则分区
        • 使用JavaAPI创建预分区
      • RowKey设计
        • 生成随机数、hash、散列值
        • 字符串反转
        • 字符串拼接
      • 内存优化
      • 基础优化
        • 允许在HDFS的文件中追加内容
        • 优化DataNode允许的最大文件打开数
        • 优化延迟高的数据操作的等待时间
        • 优化数据的写入效率
        • 设置RPC监听数量
        • 优化HStore文件大小
        • 优化HBase客户端缓存
        • 指定scan.next扫描HBase所获取的行数
        • flush、compact、split机制
  • Scala

  • Spark

  • Flink

  • 离线数仓

  • 青训营

  • DolphinScheduler

  • Doris

  • 大数据
  • Hbase
Iekr
2021-11-25
目录

HBase优化

# HBase 优化

# 预分区

每一个 region 维护着 StartRow 与 EndRow,如果加入的数据符合某个 Region 维护的 RowKey 范围,则该数据交给这个 Region 维护。那么依照这个原则,我们可以将数据所要投放的分区提前大致的规划好,以提高 HBase 性能。

# 手动设定预分区

create 'staff1','info',SPLITS => ['1000','2000','3000','4000']
1

image-20211125213840477

分为 5 个区 0-1000 1000-2000 2000-3000 3000-4000

# 生成 16 进制序列预分区

create 'staff2','info','partition2',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}
1

会分为 15 个区

image-20211125214007240

# 按文件设置的规则分区

创建 splits.txt 文件内容如下:

aaaa
bbbb
cccc
dddd
1
2
3
4
create 'staff3','partition3',SPLITS_FILE => '/home/atguigu/splits.txt'
1

image-20211125214154240

# 使用 JavaAPI 创建预分区

//自定义算法,产生一系列hash散列值存储在二维数组中
byte[][] splitKeys = 某个散列值函数
//创建HbaseAdmin实例
HBaseAdmin hAdmin = new HBaseAdmin(HbaseConfiguration.create());
//创建HTableDescriptor实例
HTableDescriptor tableDesc = new HTableDescriptor(tableName);
//通过HTableDescriptor实例和散列值二维数组创建带有预分区的Hbase表
hAdmin.createTable(tableDesc, splitKeys);
1
2
3
4
5
6
7
8

# RowKey 设计

一条数据的唯一标识就是 RowKey,那么这条数据存储于哪个分区,取决于 RowKey 处于哪个一个预分区的区间内,设计 RowKey 的主要目的 ,就是让数据均匀的分布于所有的 region 中,在一定程度上防止数据倾斜。

# 生成随机数、hash、散列值

比如: 原本 rowKey 为 1001 的,SHA1 后变成:dd01903921ea24941c26a48f2cec24e0bb0e8cc7 原本 rowKey 为 3001 的,SHA1 后变成:49042c54de64a1e9bf0b33e00245660ef92dc7bd 原本 rowKey 为 5001 的,SHA1 后变成:7b61dec07e02c188790670af43e717f0f46e8913 在做此操作之前,一般我们会选择从数据集中抽取样本,来决定什么样的 rowKey 来 Hash 后作为每个分区的临界值。

# 字符串反转

20170524000001 转成 10000042507102 20170524000002 转成 20000042507102

# 字符串拼接

20170524000001_a12e 20170524000001_93i7

# 内存优化

HBase 操作过程中需要大量的内存开销,毕竟 Table 是可以缓存在内存中的,一般会分配整个可用内存的 70% 给 HBase 的 Java 堆。但是不建议分配非常大的堆内存,因为 GC 过程持续太久会导致 RegionServer 处于长期不可用状态,一般 16~48G 内存就可以了,如果因为框架占用内存过高导致系统内存不足,框架一样会被系统服务拖死。

# 基础优化

# 允许在 HDFS 的文件中追加内容

在 hdfs-site.xml、hbase-site.xml 中添加

属性:dfs.support.append

解释:开启 HDFS 追加同步,可以优秀的配合 HBase 的数据同步和持久化。默认值为 true。

# 优化 DataNode 允许的最大文件打开数

hdfs-site.xml

属性:dfs.datanode.max.transfer.threads

解释:HBase 一般都会同一时间操作大量的文件,根据集群的数量和规模以及数据动作,设置为 4096 或者更高。默认值:4096

# 优化延迟高的数据操作的等待时间

hdfs-site.xml

属性:dfs.image.transfer.timeout

解释:如果对于某一次数据操作来讲,延迟非常高,socket 需要等待更长的时间,建议把该值设置为更大的值(默认 60000 毫秒),以确保 socket 不会被 timeout 掉。

# 优化数据的写入效率

mapred-site.xml

属性: mapreduce.map.output.compress mapreduce.map.output.compress.codec

解释:开启这两个数据可以大大提高文件的写入效率,减少写入时间。

第一个属性值修改为 true

第二个属性值修改为:org.apache.hadoop.io.compress.GzipCodec 或者其他压缩方式。

# 设置 RPC 监听数量

hbase-site.xml

属性:Hbase.regionserver.handler.count

解释:默认值为 30,用于指定 RPC 监听的数量,可以根据客户端的请求数进行调整,读写请求较多时,增加此值。

# 优化 HStore 文件大小

hbase-site.xml

属性:hbase.hregion.max.filesize

解释:默认值 10737418240(10GB),如果需要运行 HBase 的 MR 任务,可以减小此值,因为一个 region 对应一个 map 任务,如果单个 region 过大,会导致 map 任务执行时间过长。该值的意思就是,如果 HFile 的大小达到这个数值,则这个 region 会被切分为两个 Hfile。

# 优化 HBase 客户端缓存

hbase-site.xml

属性:hbase.client.write.buffer

解释:用于指定 Hbase 客户端缓存,增大该值可以减少 RPC 调用次数,但是会消耗更多内存,反之则反之。一般我们需要设定一定的缓存大小,以达到减少 RPC 次数的目的。

# 指定 scan.next 扫描 HBase 所获取的行数

hbase-site.xml

属性:hbase.client.scanner.caching

解释:用于指定 scan.next 方法获取的默认行数,值越大,消耗内存越大。

# flush、compact、split 机制

当 MemStore 达到阈值,将 Memstore 中的数据 Flush 进 Storefile;

compact 机制则是把 flush 出来的小文件合并成大的 Storefile 文件。

split 则是当 Region 达到阈值,会把过大的 Region 一分为二。

涉及属性:

即:128M 就是 Memstore 的默认阈值

hbase.hregion.memstore.flush.size:134217728

即:这个参数的作用是当单个 HRegion 内所有的 Memstore 大小总和超过指定值时,flush 该 HRegion 的所有 memstore。RegionServer 的 flush 是通过将请求添加一个队列,模拟生产消费模型来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可能会导致内存陡增,最坏的情况是触发 OOM。

**hbase.regionserver.global.memstore.upperLimit:0.4 **

hbase.regionserver.global.memstore.lowerLimit:0.38

即:当 MemStore 使用内存总量达到 hbase.regionserver.global.memstore.upperLimit 指定值时,将会有多个 MemStores flush 到文件中,MemStore flush 顺序是按照大小降序执行的,直到刷新到 MemStore 使用内存略小于 lowerLimit

编辑 (opens new window)
上次更新: 2023/12/06, 01:31:48
Hbase与Hive的集成
Scala介绍

← Hbase与Hive的集成 Scala介绍→

最近更新
01
k8s
06-06
02
进程与线程
03-04
03
计算机操作系统概述
02-26
更多文章>
Theme by Vdoing | Copyright © 2022-2025 Iekr | Blog
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式