Chiriri's blog Chiriri's blog
首页
  • Java

    • JavaSE
    • JavaEE
    • 设计模式
  • Python

    • Python
    • Python模块
    • 机器学习
  • Golang

    • Golang
    • gRPC
  • 服务器

    • Linux
    • MySQL
    • NoSQL
    • Kubernetes
  • 项目

    • 传智健康
    • 畅购商城
  • Hadoop生态

    • Hadoop
    • Zookeeper
    • Hive
    • Flume
    • Kafka
    • Azkaban
    • Hbase
    • Scala
    • Spark
    • Flink
  • 大数据项目

    • 离线数仓
  • 青训营

    • 第四届青训营
  • HTML

    • HTML
    • JavaScript
  • Vue

    • Vue2
    • TypeScript
    • Vue3
    • Uni-APP
  • 数据结构与算法
  • C语言
  • 考研数据结构
  • 计算机组成原理
  • 计算机操作系统
  • Java基础

    • Java基础
    • Java集合
    • JUC
    • JVM
  • 框架

    • Spring
    • Dubbo
    • Spring Cloud
  • 数据库

    • MySQL
    • Redis
    • Elasticesearch
  • 消息队列

    • RabbitMQ
    • RocketMQ
  • 408

    • 计算机网络
    • 操作系统
    • 算法
  • 分类
  • 标签
  • 归档
  • 导航站
GitHub (opens new window)

Iekr

苦逼后端开发
首页
  • Java

    • JavaSE
    • JavaEE
    • 设计模式
  • Python

    • Python
    • Python模块
    • 机器学习
  • Golang

    • Golang
    • gRPC
  • 服务器

    • Linux
    • MySQL
    • NoSQL
    • Kubernetes
  • 项目

    • 传智健康
    • 畅购商城
  • Hadoop生态

    • Hadoop
    • Zookeeper
    • Hive
    • Flume
    • Kafka
    • Azkaban
    • Hbase
    • Scala
    • Spark
    • Flink
  • 大数据项目

    • 离线数仓
  • 青训营

    • 第四届青训营
  • HTML

    • HTML
    • JavaScript
  • Vue

    • Vue2
    • TypeScript
    • Vue3
    • Uni-APP
  • 数据结构与算法
  • C语言
  • 考研数据结构
  • 计算机组成原理
  • 计算机操作系统
  • Java基础

    • Java基础
    • Java集合
    • JUC
    • JVM
  • 框架

    • Spring
    • Dubbo
    • Spring Cloud
  • 数据库

    • MySQL
    • Redis
    • Elasticesearch
  • 消息队列

    • RabbitMQ
    • RocketMQ
  • 408

    • 计算机网络
    • 操作系统
    • 算法
  • 分类
  • 标签
  • 归档
  • 导航站
GitHub (opens new window)
  • Hadoop

  • Zookeeper

  • Hive

  • Flume

  • Kafka

  • Azkaban

  • Hbase

    • Hbase
    • Hbase数据模型
    • Hbase 安装
    • Hbase shell
    • Hbase原理
      • 架构原理
      • 写流程
      • MemStore Flush(刷新时机)
      • 读流程
      • StoreFile Compaction
      • Region Split
    • Phoenix
    • Hbase与Hive的集成
    • HBase优化
  • Scala

  • Spark

  • Flink

  • 离线数仓

  • 青训营

  • DolphinScheduler

  • Doris

  • 大数据
  • Hbase
Iekr
2021-11-23
目录

Hbase原理

# Hbase 原理

# 架构原理

image-20211123094849599

  1. StoreFile 保存实际数据的物理文件,StoreFile 以 HFile 的形式存储在 HDFS 上。每个 Store 会有一个或多个 StoreFile(HFile),数据在每个 StoreFile 中都是有序的。
  2. MemStore 写缓存,由于 HFile 中的数据要求是有序的,所以数据是先存储在 MemStore 中,排好序后,等到达刷写时机才会刷写到 HFile,每次刷写都会形成一个新的 HFile。
  3. WAL 由于数据要经 MemStore 排序后才能刷写到 HFile,但把数据保存在内存中会有很高的概率导致数据丢失,为了解决这个问题,数据会先写在一个叫做 Write-Ahead logfile 的文件中,然后再写入 MemStore 中。所以在系统出现故障的时候,数据可以通过这个日志文件重建。Hlog 默认存储在 HDFS 上

# 写流程

image-20211123100115202

  1. Client 先访问 zookeeper,获取 hbase:meta 表位于哪个 Region Server。
  2. 访问对应的 Region Server,获取 hbase:meta 表,根据读请求的 namespace:table/rowkey,查询出目标数据位于哪个 Region Server 中的哪个 Region 中。并将该 table 的 region 信息以及 meta 表的位置信息缓存在客户端的 meta cache,方便下次访问。
  3. 与目标 Region Server 进行通讯;
  4. 将数据顺序写入(追加)到 WAL;
  5. 将数据写入对应的 MemStore,数据会在 MemStore 进行排序;
  6. 向客户端发送 ack;
  7. 等达到 MemStore 的刷写时机后,将数据刷写到 HFile。

# MemStore Flush (刷新时机)

image-20211123105052992

MemStore 刷写时机:

  1. 当某个 memstroe 的大小达到了 hbase.hregion.memstore.flush.size(默认值 128M),其所在 region 的所有 memstore 都会刷写。 当 memstore 的大小达到了 hbase.hregion.memstore.flush.size(默认值 128M)* hbase.hregion.memstore.block.multiplier(默认值 4 倍)时 (即默认为 128M*4=512MB),会阻止继续往该 memstore 写数据。
    Hbase 中不推荐创建太多了列族 由于刷写整个 memstore 都会刷写 而每次刷写都是在 hdfs 中建立新的文件 可能有 store 很小就被刷写了 浪费系统资源

  2. 当 region server 中 memstore 的总大小达到 java_heapsize * hbase.regionserver.global.memstore.size(默认值 0.4)* hbase.regionserver.global.memstore.size.upper.limit(默认值 0.95), region server 会把其的所有 region 按照其所有 memstore 的大小顺序(由大到小)依次进行刷写。直到 region server 中所有 memstore 的总大小减小到 hbase.regionserver.global.memstore.size.lower.limit (默认为空 需要配置) 以下。 当 region server 中 memstore 的总大小达到 java_heapsize*hbase.regionserver.global.memstore.size(默认值 0.4)时,会阻止继续往所有的 memstore 写数据。

  3. 到达自动刷写的时间,也会触发 memstore flush。自动刷新的时间间隔由该属性进行配置 hbase.regionserver.optionalcacheflushinterval(默认 1 小时)。

  4. 当 WAL 文件的数量超过 hbase.regionserver.max.logs,region 会按照时间顺序依次进行刷写,直到 WAL 文件数量减小到 hbase.regionserver.max.log 以下(该属性名已经废弃,现无需手动设置,最大值为 32)。

# 读流程

image-20211123112501947

读流程

  1. Client 先访问 zookeeper,获取 hbase:meta 表位于哪个 Region Server。
  2. 访问对应的 Region Server,获取 hbase:meta 表,根据读请求的 namespace:table/rowkey,查询出目标数据位于哪个 Region Server 中的哪个 Region 中。并将该 table 的 region 信息以及 meta 表的位置信息缓存在客户端的 meta cache,方便下次访问。
  3. 与目标 Region Server 进行通讯;
  4. 分别在 Block Cache(读缓存),MemStore 和 Store File(HFile)中查询目标数据,并将查到的所有数据进行合并。此处所有数据是指同一条数据的不同版本(time stamp)或者不同的类型(Put/Delete)。 先看缓存 再看 MemStore 再看 Store file
  5. 将从文件中查询到的数据块(Block,HFile 数据存储单元,默认大小为 64KB)缓存到 Block Cache。
  6. 将合并后的最终结果返回给客户端。

# StoreFile Compaction

由于 memstore 每次刷写都会生成一个新的 HFile,且同一个字段的不同版本(timestamp)和不同类型(Put/Delete)有可能会分布在不同的 HFile 中,因此查询时需要遍历所有的 HFile。为了减少 HFile 的个数,以及清理掉过期和删除的数据,会进行 StoreFile Compaction。

image-20211123132901237

Compaction 分为两种,分别是 Minor Compaction 和 Major Compaction。

  1. Minor Compaction 会将临近的若干个较小的 HFile 合并成一个较大的 HFile,但不会清理过期和删除的数据。
  2. Major Compaction 会将一个 Store 下的所有的 HFile 合并成一个大 HFile,并且会清理掉过期和删除的数据。

# Region Split

默认情况下,每个 Table 起初只有一个 Region,随着数据的不断写入,Region 会自动进行拆分。刚拆分时,两个子 Region 都位于当前的 Region Server,但处于负载均衡的考虑,HMaster 有可能会将某个 Region 转移给其他的 Region Server。

image-20211123134140011

Region Split 时机:

  1. 当 1 个 region 中的某个 Store 下所有 StoreFile 的总大小超过 hbase.hregion.max.filesize (默认为 10737418240 十 GB 大小),该 Region 就会进行拆分(0.94 版本之前)。
  2. 当 1 个 region 中的某个 Store 下所有 StoreFile 的总大小超过 Min (R^3 * 2 * "hbase.hregion.memstore.flush.size",hbase.hregion.max.filesize"),该 Region 就会进行拆分,其中 R 为当前 Region Server 中属于该 Table 的个数(0.94 版本之后)。
  3. Hbase 2.0 引入了新的 split 策略:如果当前 RegionServer 上该表只有一个 Regin 按照 2 * "hbase.hregion.memstore.flush.size" 分裂,否则按照 hbase.hregion.max.filesize 分裂
编辑 (opens new window)
上次更新: 2023/12/06, 01:31:48
Hbase shell
Phoenix

← Hbase shell Phoenix→

最近更新
01
k8s
06-06
02
进程与线程
03-04
03
计算机操作系统概述
02-26
更多文章>
Theme by Vdoing | Copyright © 2022-2025 Iekr | Blog
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式